Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Epidemiol Infect ; 149: e110, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-2316878

ABSTRACT

The outbreak of pneumonia-like respiratory disorder at China and its rapid transmission world-wide resulted in public health emergency, which brought lineage B betacoronaviridae SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) into spotlight. The fairly high mutation rate, frequent recombination and interspecies transmission in betacoronaviridae are largely responsible for their temporal changes in infectivity and virulence. Investigation of global SARS-CoV-2 genotypes revealed considerable mutations in structural, non-structural, accessory proteins as well as untranslated regions. Among the various types of mutations, single-nucleotide substitutions are the predominant ones. In addition, insertion, deletion and frame-shift mutations are also reported, albeit at a lower frequency. Among the structural proteins, spike glycoprotein and nucleocapsid phosphoprotein accumulated a larger number of mutations whereas envelope and membrane proteins are mostly conserved. Spike protein and RNA-dependent RNA polymerase variants, D614G and P323L in combination became dominant world-wide. Divergent genetic variants created serious challenge towards the development of therapeutics and vaccines. This review will consolidate mutations in different SARS-CoV-2 proteins and their implications on viral fitness.


Subject(s)
COVID-19/virology , Genome, Viral/physiology , Mutation , SARS-CoV-2/genetics , Animals , Coronavirus Nucleocapsid Proteins/genetics , Genome, Viral/genetics , Humans , Multigene Family , Phosphoproteins/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Regulatory and Accessory Proteins/genetics , Virulence/genetics
2.
Sci Rep ; 12(1): 19089, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2106470

ABSTRACT

Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p value = 9.37*10-4, 1.0*10-15, 4.76*10-7 and 1.56*10-4, respectively), and five additional polymutants in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing trajectories (all p values < 1.0*10-15). In the absence of relevant clinical data for these newly emerging mutations, it is important to monitor them closely. Two emerging mutations may be of particular concern: the N1192S mutation in spike protein locates in an extremely highly conserved region of all human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA polymerase may induce conformational changes that could impact remdesivir binding.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Unsupervised Machine Learning , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , RNA-Dependent RNA Polymerase , Mutation , Phosphoproteins/genetics
3.
Microbiol Spectr ; 10(4): e0078122, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938014

ABSTRACT

The emergence and evolution of SARS-CoV-2 is characterized by the occurrence of diverse sets of mutations that affect virus characteristics, including transmissibility and antigenicity. Recent studies have focused mostly on spike protein mutations; however, SARS-CoV-2 variants of interest (VoI) or concern (VoC) contain significant mutations in the nucleocapsid protein as well. To study the relevance of mutations at the virion level, recombinant baculovirus expression system-based virus-like particles (VLPs) were generated for the prototype Wuhan sequence along with spike protein mutants like D614G and G1124V and the significant RG203KR mutation in nucleocapsid. All four structural proteins were assembled in a particle for which the morphology and size, confirmed by transmission electron microscopy, closely resembled that of the native virion. The VLP harboring RG203KR mutations in nucleocapsid exhibited augmentation of humoral immune responses and enhanced neutralization by immunized mouse sera. Results demonstrate a noninfectious platform to quickly assess the implication of mutations in structural proteins of the emerging variant. IMPORTANCE Since its origin in late 2019, the SARS-CoV-2 virus has been constantly mutating and evolving. Current studies mostly employ spike protein (S) pseudovirus systems to determine the effects of mutations on the infectivity and immunogenicity of variants. Despite its functional importance and emergence as a mutational hot spot, the nucleocapsid (N) protein has not been widely studied. The generation of SARS-CoV-2 VLPs in a baculoviral system in this study, with mutations in the S and N proteins, allowed examination of the involvement of all the structural proteins involved in viral entry and eliciting an immune response. This approach provides a platform to study the effect of mutations in structural proteins of SARS-CoV-2 that potentially contribute to cell infectivity, immune response, and immune evasion, bypassing the use of infectious virus for the same analyses.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Animals , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Mice , Mutation , Phosphoproteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virion/genetics
4.
Comput Biol Med ; 146: 105537, 2022 07.
Article in English | MEDLINE | ID: covidwho-1899652

ABSTRACT

Recently a novel coactivator, Leupaxin (LPXN), has been reported to interact with Androgen receptor (AR) and play a significant role in the invasion and progression of prostate cancer. The interaction between AR and LPXN occurs in a ligand-dependent manner and has been reported that the LIM domain in the Leupaxin interacts with the LDB (ligand-binding domain) domain AR. However, no detailed study is available on how the LPXN interacts with AR and increases the (prostate cancer) PCa progression. Considering the importance of the novel co-activator, LPXN, the current study also uses state-of-the-art methods to provide atomic-level insights into the binding of AR and LPXN and the impact of the most frequent clinical mutations H874Y, T877A, and T877S on the binding and function of LPXN. Protein coupling analysis revealed that the three mutants favour the robust binding of LPXN than the wild type by altering the hydrogen bonding network. Further understanding of the binding variations was explored through dissociation constant prediction which demonstrated similar reports as the docking results. A molecular simulation approaches further revealed the dynamic features which reported variations in the dynamics stability, protein packing, hydrogen bonding network, and residues flexibility index. Furthermore, we also assessed the protein motion and free energy landscape which also demonstrated variations in the internal dynamics. The binding free energy calculation revealed -32.95 ± 0.17 kcal/mol for the wild type, for H874Y the total binding energy (BFE) was -36.69 ± 0.11 kcal/mol, for T877A the BFE was calculated to be -38.78 ± 0.17 kcal/mol while for T877S the BFE -41.16 ± 0.12 kcal/mol. This shows that the binding of LPXN is increased by these mutations which consequently increase the PCa invasion and motility. In conclusion, the current study helps in understanding the protein networks and particular the coupling of AR-LPXN in prostate cancer and is of great interest in deciphering the molecular mechanism of disease and therapeutics developments.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Humans , Ligands , Male , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Binding , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
5.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875802

ABSTRACT

SARS-CoV-2 is constantly evolving with lineages emerging and others eclipsing. Some lineages have an important epidemiological impact and are known as variants of interest (VOIs), variants under monitoring (VUMs) or variants of concern (VOCs). Lineage A.27 was first defined as a VUM since it holds mutations of concern. Here, we report additional lineage A.27 data and sequences from five African countries and describe the molecular characteristics, and the genetic history of this lineage worldwide. Based on the new sequences investigated, the most recent ancestor (tMRCA) of lineage A.27 was estimated to be from April 2020 from Niger. It then spread to Europe and other parts of the world with a peak observed between February and April 2021. The detection rate of A.27 then decreased with only a few cases reported during summer 2021. The phylogenetic analysis revealed many sub-lineages. Among them, one was defined by the substitution Q677H in the spike (S) gene, one was defined by the substitution D358N in the nucleoprotein (N) gene and one was defined by the substitution A2143V in the ORF1b gene. This work highlights the importance of molecular characterization and the timely submission of sequences to correctly describe the circulation of particular strains in order to be proactive in monitoring the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
7.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718406

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation , Genome, Viral/genetics , Humans , New York City/epidemiology , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
8.
J Mol Biol ; 434(9): 167516, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1712817

ABSTRACT

Stress granule (SG) formation mediated by Ras GTPase-activating protein-binding protein 1 (G3BP1) constitutes a key obstacle for viral replication, which makes G3BP1 a frequent target for viruses. For instance, the SARS-CoV-2 nucleocapsid (N) protein interacts with G3BP1 directly to suppress SG assembly and promote viral production. However, the molecular basis for the SARS-CoV-2 N - G3BP1 interaction remains elusive. Here we report biochemical and structural analyses of the SARS-CoV-2 N - G3BP1 interaction, revealing differential contributions of various regions of SARS-CoV-2 N to G3BP1 binding. The crystal structure of the NTF2-like domain of G3BP1 (G3BP1NTF2) in complex with a peptide derived from SARS-CoV-2 N (residues 1-25, N1-25) reveals that SARS-CoV-2 N1-25 occupies a conserved surface groove of G3BP1NTF2 via surface complementarity. We show that a φ-x-F (φ, hydrophobic residue) motif constitutes the primary determinant for G3BP1NTF2-targeting proteins, while the flanking sequence underpins diverse secondary interactions. We demonstrate that mutation of key interaction residues of the SARS-CoV-2 N1-25 - G3BP1NTF2 complex leads to disruption of the SARS-CoV-2 N - G3BP1 interaction in vitro. Together, these results provide a molecular basis of the strain-specific interaction between SARS-CoV-2 N and G3BP1, which has important implications for the development of novel therapeutic strategies against SARS-CoV-2 infection.


Subject(s)
Coronavirus Nucleocapsid Proteins , DNA Helicases , Poly-ADP-Ribose Binding Proteins , Protein Interaction Domains and Motifs , RNA Helicases , SARS-CoV-2 , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Crystallography , DNA Helicases/chemistry , Humans , Mutation , Phosphoproteins/chemistry , Phosphoproteins/genetics , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry
9.
Stem Cell Reports ; 17(3): 522-537, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692862

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) commonly have manifestations of heart disease. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 27 proteins. Currently, SARS-CoV-2 gene-induced abnormalities of human heart muscle cells remain elusive. Here, we comprehensively characterized the detrimental effects of a SARS-CoV-2 gene, Orf9c, on human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) by preforming multi-omic analyses. Transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with Orf9c overexpression (Orf9cOE) identified concordantly up-regulated genes enriched into stress-related apoptosis and inflammation signaling pathways, and down-regulated CM functional genes. Proteomic analysis revealed enhanced expressions of apoptotic factors, whereas reduced protein factors for ATP synthesis by Orf9cOE. Orf9cOE significantly reduced cellular ATP level, induced apoptosis, and caused electrical dysfunctions of hPSC-CMs. Finally, drugs approved by the U.S. Food and Drug Administration, namely, ivermectin and meclizine, restored ATP levels and ameliorated CM death and functional abnormalities of Orf9cOE hPSC-CMs. Overall, we defined the molecular mechanisms underlying the detrimental impacts of Orf9c on hPSC-CMs and explored potentially therapeutic approaches to ameliorate Orf9c-induced cardiac injury and abnormalities.


Subject(s)
COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Genome-Wide Association Study/methods , SARS-CoV-2/genetics , Action Potentials/drug effects , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Apoptosis/genetics , COVID-19/virology , Down-Regulation , Humans , Ivermectin/pharmacology , Meclizine/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphoproteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Interaction Maps/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction/genetics , Transcriptome/drug effects , Up-Regulation
10.
Int J Mol Sci ; 23(4)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1690219

ABSTRACT

The development of prophylactic agents against the SARS-CoV-2 virus is a public health priority in the search for new surrogate markers of active virus replication. Early detection markers are needed to follow disease progression and foresee patient negativization. Subgenomic RNA transcripts (with a focus on sgN) were evaluated in oro/nasopharyngeal swabs from COVID-19-affected patients with an analysis of 315 positive samples using qPCR technology. Cut-off Cq values for sgN (Cq < 33.15) and sgE (Cq < 34.06) showed correlations to high viral loads. The specific loss of sgN in home-isolated and hospitalized COVID-19-positive patients indicated negativization of patient condition, 3-7 days from the first swab, respectively. A new detection kit for sgN, gene E, gene ORF1ab, and gene RNAse P was developed recently. In addition, in vitro studies have shown that 2'-O-methyl antisense RNA (related to the sgN sequence) can impair SARS-CoV-2 N protein synthesis, viral replication, and syncytia formation in human cells (i.e., HEK-293T cells overexpressing ACE2) upon infection with VOC Alpha (B.1.1.7)-SARS-CoV-2 variant, defining the use that this procedure might have for future therapeutic actions against SARS-CoV-2.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/physiology , Virus Replication/physiology , Coronavirus Nucleocapsid Proteins/analysis , Giant Cells/drug effects , Giant Cells/virology , HEK293 Cells , Humans , Limit of Detection , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/genetics , RNA, Antisense/pharmacology , RNA, Viral , Ribonuclease P/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Sensitivity and Specificity , Social Isolation , Viral Load , Viroporin Proteins/genetics , Virus Replication/drug effects
11.
Microb Cell Fact ; 21(1): 21, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1666655

ABSTRACT

We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline-threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540-588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mass Spectrometry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
12.
Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: covidwho-1661973

ABSTRACT

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
14.
J Virol Methods ; 302: 114486, 2022 04.
Article in English | MEDLINE | ID: covidwho-1654882

ABSTRACT

BACKGROUND: Recently, the Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 infection has spread rapidly around the world, becoming a new global pandemic disease. Nucleic acid detection is the primary method for clinical diagnosis of SARS-CoV-2 infection, with the addition of antibody and antigen detection. Nucleocapsid protein (NP) is a kind of conservative structural protein with abundant expression during SARS-CoV-2 infection, which makes it an ideal target for immunoassay. METHODS: The coding sequence for SARS-CoV-2-NP was obtained by chemical synthesis, and then inserted into pET28a(+). The soluble recombinant NP (rNP) with an estimated molecular weight of 49.4 kDa was expressed in E. coli cells after IPTG induction. Six-week-old BALB/c mice were immunized with rNP, and then their spleen cells were fused with SP2/0 cells, to develop hybridoma cell lines that stably secreted monoclonal antibodies (mAbs) against NP. The mAbs were preliminarily evaluated by enzyme-linked immunosorbent assay (ELISA), and then used to develop a magnetic particle-based chemiluminescence enzyme immunoassay (CLEIA) for measurement of SARS-CoV-2-NP. RESULTS: mAb 15B1 and mAb 18G10 were selected as capture and detection antibody respectively to develop CLEIA, due to the highest sensitivity for rNP detection. The proposed CLEIA presented a good linearity for rNP detection at a working range from 0.1 to 160 µg/L, with a precision coefficient of variance below 10 %. CONCLUSION: The newly developed mAbs and CLEIA can serve as potential diagnostic tools for clinical measurement of SARS-CoV-2-NP.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/genetics , Escherichia coli/genetics , Humans , Immunoassay/methods , Luminescence , Mice , Phosphoproteins/analysis , Phosphoproteins/genetics , Sensitivity and Specificity
15.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653430

ABSTRACT

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Genome, Viral , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Dosage , Gene Expression , Humans , Jurkat Cells , Lentivirus/genetics , Lentivirus/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic/supply & distribution , Reference Standards , Reproducibility of Results , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging
16.
Front Immunol ; 12: 771011, 2021.
Article in English | MEDLINE | ID: covidwho-1639016

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an ongoing pandemic. Detection and vaccination are essential for disease control, but they are distinct and complex operations that require significant improvements. Here, we developed an integrated detection and vaccination system to greatly simplify these efforts. We constructed recombinant baculoviruses to separately display the nucleocapsid (N) and spike (S) proteins of SARS-CoV-2. Insect cells infected by the recombinant baculoviruses were used to generate a cell-based system to accurately detect patient serum. Notably, although well-recognized by our newly developed detection system in which S-displaying insect cells acted as antigen, anti-S antibodies from many patients were barely detectable by Western blot, evidencing that COVID-19 patients primarily produce conformation-dependent anti-S antibodies. Furthermore, the same baculovirus constructs can display N (N-Bac) or S (S-Bac) on the baculovirus envelope and serve as vector vaccines. Animal experiments show that S-Bac or N-Bac immunization in mice elicited a strong and specific antibody response, and S-Bac in particular stimulated effective neutralizing antibodies without the need for adjuvant. Our integrated system maintains antigen conformation and membrane structure to facilitate serum detection and antibody stimulation. Thus, compared with currently available technologies, our system represents a simplified and efficient platform for better SARS-CoV-2 detection and vaccination.


Subject(s)
Baculoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Baculoviridae/genetics , COVID-19/immunology , COVID-19/prevention & control , Cell Line , Cell Surface Display Techniques , Coronavirus Nucleocapsid Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Vaccination , Young Adult
18.
PLoS Pathog ; 18(1): e1010242, 2022 01.
Article in English | MEDLINE | ID: covidwho-1622379

ABSTRACT

In-depth analysis of SARS-CoV-2 quasispecies is pivotal for a thorough understating of its evolution during infection. The recent deployment of COVID-19 vaccines, which elicit protective anti-spike neutralizing antibodies, has stressed the importance of uncovering and characterizing SARS-CoV-2 variants with mutated spike proteins. Sequencing databases have allowed to follow the spread of SARS-CoV-2 variants that are circulating in the human population, and several experimental platforms were developed to study these variants. However, less is known about the SARS-CoV-2 variants that are developed in the respiratory system of the infected individual. To gain further insight on SARS-CoV-2 mutagenesis during natural infection, we preformed single-genome sequencing of SARS-CoV-2 isolated from nose-throat swabs of infected individuals. Interestingly, intra-host SARS-CoV-2 variants with mutated S genes or N genes were detected in all individuals who were analyzed. These intra-host variants were present in low frequencies in the swab samples and were rarely documented in current sequencing databases. Further examination of representative spike variants identified by our analysis showed that these variants have impaired infectivity capacity and that the mutated variants showed varied sensitivity to neutralization by convalescent plasma and to plasma from vaccinated individuals. Notably, analysis of the plasma neutralization activity against these variants showed that the L1197I mutation at the S2 subunit of the spike can affect the plasma neutralization activity. Together, these results suggest that SARS-CoV-2 intra-host variants should be further analyzed for a more thorough characterization of potential circulating variants.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19 , Coronavirus Nucleocapsid Proteins , Databases, Nucleic Acid , Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adult , Aged , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , Child , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Female , HEK293 Cells , Humans , Male , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Eur J Med Res ; 26(1): 147, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1582004

ABSTRACT

BACKGROUND: The outbreak of novel coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern. Quantitative testing of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus is demanded in evaluating the efficacy of antiviral drugs and vaccines and RT-PCR can be widely deployed in the clinical assay of viral loads. Here, we developed a quantitative RT-PCR method for SARS-CoV-2 virus detection in this study. METHODS: RT-PCR kits targeting E (envelope) gene, N (nucleocapsid) gene and RdRP (RNA-dependent RNA polymerase) gene of SARS-CoV-2 from Roche Diagnostics were evaluated and E gene kit was employed for quantitative detection of COVID-19 virus using Cobas Z480. Viral load was calculated according to the standard curve established by series dilution of an E-gene RNA standard provided by Tib-Molbiol (a division of Roche Diagnostics). Assay performance was evaluated. RESULTS: The performance of the assay is acceptable with limit of detection (LOD) below 10E1 copies/µL and lower limit of quantification (LLOQ) as 10E2 copies/µL. CONCLUSION: A quantitative detection of the COVID-19 virus based on RT-PCR was established.


Subject(s)
COVID-19/diagnosis , Coronavirus Envelope Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Humans , Limit of Detection , Phosphoproteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load/methods
20.
PLoS One ; 16(11): e0259165, 2021.
Article in English | MEDLINE | ID: covidwho-1581791

ABSTRACT

The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. In this proof-of-concept study, we explored the potential of targeted mass spectrometry (MS) based proteomics for the detection of SARS-CoV-2 proteins in both research samples and clinical specimens. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) MS in infected Vero E6 cells. For tryptic peptides of Nucleocapsid protein, the limit of detection was estimated to be in the mid-attomole range (9E-13 g). Next, this PRM methodology was applied to the detection of viral proteins in various COVID-19 patient clinical specimens, such as sputum and nasopharyngeal swabs. SARS-CoV-2 proteins were detected in these samples with high sensitivity in all specimens with PCR Ct values <24 and in several samples with higher CT values. A clear relationship was observed between summed MS peak intensities for SARS-CoV-2 proteins and Ct values reflecting the abundance of viral RNA. Taken together, these results suggest that targeted MS based proteomics may have the potential to be used as an additional tool in COVID-19 diagnostics.


Subject(s)
COVID-19/diagnosis , Proteomics , SARS-CoV-2/isolation & purification , Viral Proteins/isolation & purification , Animals , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Humans , Mass Spectrometry , Nucleocapsid/genetics , Nucleocapsid/isolation & purification , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Proteome/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sputum/virology , Vero Cells , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL